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Several epidemiologic studies have reported 
associations between maternal exposure to 
nitrogen dioxide (NO2) during pregnancy and 
fetal growth assessed by birth weight, taking 
into account gestational duration (e.g., Bell 
et al. 2007; Liu et al. 2007; Ritz and Wilhelm 
2008; Slama et al. 2008; Wilhelm and Ritz 
2003). Various approaches may be used to 
estimate exposure, from the use of biomarkers 
of exposure to personal dosimeters and envi-
ronmental models. Most previous studies have 
been based on measurements from permanent 
air quality monitoring stations (AQMSs), 
using data from the AQMS closest to the sub-
ject’s home address or interpolating data for 
neighboring monitors, for which measure-
ments are averaged over the entire pregnancy 
or over each trimester of pregnancy. This 
approach has the advantage of making use of 
readily available exposure data, being simple to 
implement and, because pollutants are assessed 
on an hourly or at least weekly basis, being 
highly flexible in terms of the temporal expo-
sure window considered. However, the spatial 
density of AQMS networks is generally low, 
and studies have shown that the data provided 

by permanent AQMSs are representative only 
of air pollution levels in the close vicinity of 
the station (Lebret et al. 2000). Studies based 
on AQMS measurements assume that air pol-
lution levels are homogeneous within a buffer 
of several kilometers around each monitor 
or, at least, that exposure misclassification 
introduces no major bias into the estimated 
exposure– response relationship. However, 
studies based on the simultaneous use of sev-
eral exposure models have demonstrated that 
the amplitude of the measurement error may 
be large (Nerriere et al. 2005; Nethery et al. 
2008; Sarnat et al. 2005). Moreover, at least 
for respiratory or cardiovascular outcomes, 
measurement error may have a large impact 
on the exposure–response relationship (Miller 
et al. 2007; Van Roosbroeck et al. 2008). This 
issue has very little been studied in the context 
of reproductive outcomes (Brauer et al. 2008).

We aimed to compare the exposure model 
based on the nearest AQMS and a temporally 
adjusted geostatistical (TAG) model based on 
measurement campaigns with a fine spatial 
resolution, and also focusing on background 
pollution, in the context of a mother–child 

cohort. We compared these models in terms of 
estimated NO2 levels and the estimated asso-
ciation between NO2 levels and birth weight.

Materials and Methods
Study population and data collection. This study 
was conducted in a subgroup of the French 
EDEN (study of pre- and early post natal 
determinants of the child’s development and 
health) mother–child cohort. Pregnant women 
at < 26 weeks of gestation were recruited from 
the maternity wards of Poitiers and Nancy uni-
versity hospitals (France) between September 
2003 and January 2006. Gestational age was 
assessed from the date of the last menstrual 
period (Slama et al. 2009). Exclusion criteria 
were a personal history of diabetes, multiple 
pregnancy, intention to deliver outside the uni-
versity hospital or to move out of the study 
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Background: Studies of the effects of air pollutants on birth weight often assess exposure with 
 networks of permanent air quality monitoring stations (AQMSs), which have a poor spatial resolution.

oBjective: We aimed to compare the exposure model based on the nearest AQMS and a temporally 
adjusted geostatistical (TAG) model with a finer spatial resolution, for use in pregnancy studies.

Methods: The AQMS and TAG exposure models were implemented in two areas surrounding 
medium-size cities in which 776 pregnant women were followed as part of the EDEN mother–child 
cohort. The exposure models were compared in terms of estimated nitrogen dioxide (NO2) levels 
and of their association with birth weight.

results: The correlations between the two estimates of exposure during the first trimester of preg-
nancy were r = 0.67, 0.70, and 0.83 for women living within 5, 2, and 1 km of an AQMS, respec-
tively. Exposure patterns displayed greater spatial than temporal variations. Exposure during the 
first trimester of pregnancy was most strongly associated with birth weight for women living < 2 km 
away from an AQMS: a 10-µg/m3 increase in NO2 exposure was associated with an adjusted dif-
ference in birth weight of –37 g [95% confidence interval (CI), –75 to 1 g] for the nearest-AQMS 
model and of –51 g (95% CI, –128 to 26 g) for the TAG model. The association was less strong 
(higher p-value) for women living within 5 or 1 km of an AQMS.

conclusions: The two exposure models tended to give consistent results in terms of association 
with birth weight, despite the moderate concordance between exposure estimates.

key words: atmospheric pollution, birth weight, cohort, exposure modeling, geostatistical, meas-
urement error, monitoring station, nitrogen dioxide, spatial variation, temporal variation. Environ 
Health Perspect 118:1483–1489 (2010). doi:10.1289/ehp.0901509 [Online 14 May 2010]
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region within the next 3 years, and an inability 
to speak and read French. The birth weights of 
the infants were extracted from the maternity 
records. Information on maternal active and 
passive smoking, height, weight, and educa-
tional level were collected by interview between 
24 and 28 weeks of gestation, and by ques-
tionnaire after birth. The study was approved 
by the relevant ethical committees (Comité 
Consultatif pour la Protection des Personnes 
dans la Recherche Biomédicale, Le Kremlin-
Bicêtre University Hospital, and Commission 
Nationale de l’Informatique et des Libertés), 
and all participating women gave informed 
written consent for their own participation and 
that of their children. More details of this study 
can be found elsewhere (Drouillet et al. 2009; 
Slama et al. 2009; Yazbeck et al. 2009).

Exposure to NO2. We restricted the cohort 
to pregnant women living in two areas, one 
of 165 km2 around Nancy and the other of 
315 km2 around Poitiers, in which air quality 
measurement campaigns have been conducted. 
We then further restricted the study area to the 
immediate vicinity of an AQMS, focusing on 
circular buffers with a radius of 5, 2, and 1 km 
around each AQMS (Figure 1B,D). The detailed 
addresses of all women were geocoded in ArcGIS 
(version 9.3; ESRI, Redlands, CA, USA). For 
both models, changes of home address between 
inclusion and delivery were taken into account 
by calculating time-weighted means of exposure 
over the relevant time windows [whole preg-
nancy, and each trimester (92 days per trimester 
if no delivery) of pregnancy].

Nearest-AQMS model (model 1). We 
obtained air pollution data from the Airlor 
(Nancy) and Atmo-Poitou-Charentes 
(Atmo-PC)(Poitiers) AQMS networks. All per-
manent AQMS measuring NO2 concentrations 
during the study period and located within 
2.5 km of the limits of the study areas were 
considered (three in the Poitiers area and six in 
the Nancy area) (Figure 1A,C), excluding those 
labeled as traffic (i.e., located < 5 m from a road 
with traffic levels of > 10,000 vehicles/day) 
(Agence de l’Environnement et de la Maîtrise 
de l’Energie 2002) or industrial stations. For 
each woman i, hourly measures of NO2 con-
centration by the AQMS j closest to her home 
address were averaged over each time window 
Δi

t considered (noted Δt for convenience), to 
obtain our exposure estimate E1i

j,Δt.
TAG model (model 2). NO2 measurement 

campaigns with a Palmes diffusive sampler 
(Palmes et al. 1976) were conducted in the 
urban and periurban areas of both cities. The 
diffusive samplers were located so as to give 
measurements of background pollution in each 
area (61 locations in the Poitiers area, 98 loca-
tions in the Nancy area). The campaigns lasted 
14 days (Poitiers) or 10–15 days (Nancy) and 
were repeated throughout the year to capture 
seasonal variations. Nine campaigns were per-
formed in 2005 in the Poitiers area, and 10 
were performed in 2002 in the Nancy area 
(Airlor 2004; Atmo-PC 2007). In each area, 
for each passive sampler, the AQMS giving 
the measurements most strongly correlated 
with the measurements of the passive sampler 

during campaigns was used to estimate mean 
annual concentration at each measurement 
location. These estimated annual concentra-
tions were smoothed over the whole area with 
kriging techniques (Chilès and Delfiner 1999) 
on a 50 × 50 m grid, with Isatis software 
version 6.06 (Géovariances, Fontainebleau, 
France) (Figure 1B,D). This corresponded to 
our estimate of Ci

yearly, the mean NO2 concen-
tration at the home address, for the year 2005 
in Poitiers and 2002 in Nancy (spatial compo-
nent of the model).

The estimated annual NO2 concentra-
tions were then combined with time-specific 
measurements from the permanent AQMS to 
capture temporal variations in concentrations. 
This approach has previously been used in the 
context of land use regression (LUR) models 
(Slama et al. 2007). The hourly NO2 meas ures 
of all AQMSs from the area were averaged over 
each time window Δt considered (Si

all, Δt) and 
also over the year in which the measurement 
campaign was performed (Sall, yearly). The ratio 
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,
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i
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was the temporal component of the model. 
The temporally adjusted estimate of NO2 
exposure E2i

Δt for woman i was the product 
of the spatial and temporal components, or
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S

,

,
t

i i t
i

yearly all yearly
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#=D

D
f p. [1]

Statistical analyses. For each model, we 
assessed the relative contribution of spatial (or 
temporal) variations in exposure contrasts by 
Pearson’s correlation coefficient between the 
exposure estimate and its spatial (or tempo-
ral) component. We also carried out variance 
decomposition. The nearest-AQMS model 
could be broken down as

 1E E E E SS1 11 , ,j t
i

t t j t
i

j
i

j
i= -+ - +D D D Da ak k, [2]

with E1 tD  the mean level of exposure of all 
women during the time window Δt, and Si

j the 
NO2 concentration at AQMS j averaged over 
the entire study period, so as to obtain a spatial 
component S E1j

i
t- D  dependent solely on 

the address of the woman. This corresponded 
to our estimate of the spatial component of the 
AQMS model; E1i

j, Δt – Si
j corresponded to 

our estimate of the temporal component of the 
model. The TAG model was log-transformed 
and expressed as

 log log logE C S
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,

,
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for the variance analysis. These analyses were 
restricted to women who did not change 
address during pregnancy.

Figure 1. Mean annual NO2 levels estimated by the nearest-AQMS model in Poitiers (A) and Nancy areas 
(C) and by the TAG model in Poitiers (B) and Nancy areas (D).
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For comparison of the exposure estimates 
generated by each model, exposure esti-
mates for the two models were compared by 
Kruskal–Wallis rank tests and by calculating 
correlation coefficients (r). The distributions of 
the exposures estimated by the nearest-AQMS 
model and by the TAG model were plotted as 
a function of the AQMS closest to woman’s 
home address, with and without excluding 
the AQMS located in the city center. We also 
assessed the concordance between the esti-
mates generated by the two models, classified 
into tertiles, by determining percentage con-
cordance and the κ coefficient. Bland–Altman 
plots were used to estimate the magnitude of 
the systematic error between the two exposure 
models (Bland and Altman 1986).

For exposure–response relationships, we 
studied the relationship between birth weight 
and NO2 exposure during each exposure win-
dow in linear regression models taking into 
account gestational age and adjustment fac-
tors. Linear trend tests were performed with 
a categorical variable, the value of which cor-
responded to the category-specific median 
NO2 concentration. The adjustment factors 
were selected on the basis of a priori knowl-
edge (Rothman et al. 2008). We adjusted 
for active and passive smoking during the 
second trimester of pregnancy, because these 
factors were more strongly associated with 
birth weight than were exposures during the 
first trimester, the third trimester, or all three 
trimesters combined. We also adjusted for sex 
of the newborn, maternal height (as a contin-
uous variable), prepregnancy weight (broken 
stick model with a knot at 60 kg), birth order, 
maternal age at end of education, center, and 
trimester of pregnancy. Statistical analyses 
were carried out with STATA statistical soft-
ware (Stata SE version 10.1; StataCorp LP, 
College Station, TX, USA). Analyses were 
repeated for the three buffers considered (< 5, 
2, or 1 km from an AQMS).

Results
Population. Of the 1,893 women from the 
cohort with a known offspring birth weight, 
776 lived in the study area, < 5 km from an 
AQMS, during at least one trimester of preg-
nancy (431 and 158 women lived within 2 
and 1 km of an AQMS, respectively). Mean 
birth weight was 3,284 g (25, 50, 75th per-
centiles: 3,005, 3,310, 3,620 g). Table 1 shows 
the characteristics of the study population. 

Exposure to air pollutants. Estimates of 
exposure to NO2 were higher in Nancy than 
in Poitiers, whatever the exposure model 
and exposure window considered (Figure 1, 
Tables 1 and 2). The nearest-AQMS model 
estimate during pregnancy was more strongly 
correlated with the spatial component of the 
TAG model (r = 0.61, 0.68, and 0.84, for 
the 5-, 2-, and 1-km buffers, respectively) 

than with its temporal component (r = 0.35, 
0.35, and 0.45, respectively). For both mod-
els, exposure estimates throughout preg-
nancy were subject to strong spatial variation 

(accounting for > 90% of the variance of 
exposure; Table 3). Temporal variations made 
a greater contribution to total variation when 
we considered trimester-specific windows 

Table 1. Characteristics of women living < 5 km away from an AQMS and their associations with NO2 
 levels averaged during pregnancy (n = 776). 

Mean (median) NO2 level (µg/m3)

Characteristic n (%)
Nearest-AQMS 

model p-Valuea TAG model p-Valuea

Sex of offspring 0.97 0.28
Male 395 (51) 28.6 (32.3) 23.6 (23.8)
Female 381 (49) 28.6 (32.5) 23.9 (23.9)

Gestational duration (weeks) 0.37 0.17
30–36 48 (6) 30.2 (33.4) 24.7 (23.1)
37–38 151 (20) 29.1 (32.6) 24.3 (24.1)
39–40 407 (52) 28.1 (32.2) 23.4 (23.6)
≥ 41 170 (22) 29.2 (32.8) 23.8 (24.3)

Birth order 0.71 0.14
First birth 367 (47) 28.8 (33.4) 23.9 (23.9)
Second birth 263 (34) 28.7 (31.7) 23.9 (24.0)
Third birth or more 145 (19) 28.0 (32.2) 23.0 (23.1)
Missing value 1 

Trimester of conception of the child < 10–4 < 10–4

January–March 167 (21) 25.7 (25.3) 21.5 (21.9)
April–June 184 (24) 29.1 (33.6) 23.5 (24.0)
July–September 226 (29) 31.2 (35.2) 25.9 (25.7)
October–December 199 (26) 27.7 (31.3) 23.3 (23.5)

Maternal age at conception (years) < 10–2 < 10–2

< 25 187 (24) 26.7 (26.3) 22.8 (22.7)
25–29 289 (37) 30.0 (33.8) 24.3 (24.3)
30–34 203 (26) 28.7 (32.1) 24.2 (24.0)
≥ 35 97 (13) 27.9 (32.3) 22.9 (23.4)

Maternal height (cm) 0.64 0.44
< 160 188 (24) 28.3 (32.0) 23.4 (24.0)
160–169 460 (60) 28.6 (32.7) 23.8 (23.8)
≥ 170 121 (16) 29.4 (33.1) 24.2 (24.2)
Missing value 7 

Maternal prepregnancy weight (kg) 0.33 0.46
< 50 83 (11) 27.7 (28.8) 24.3 (24.1)
50–59 333 (43) 28.6 (32.3) 23.8 (23.8)
60–69 211 (27) 29.4 (33.5) 23.8 (24.0)
70–79 87 (11) 29.0 (33.0) 23.6 (23.8)
≥ 80 60 (8) 26.6 (25.9) 22.7 (22.0)
Missing value 2

Body mass index before pregnancy (kg/m2) 0.39 0.07
< 18.5 82 (11) 29.6 (34.3) 25.0 (24.7)
18.5–24.9 512 (67) 28.5 (32.1) 23.8 (23.9)
25–29.9 111 (14) 29.4 (33.7) 23.3 (23.4)
≥ 30 62 (8) 27.1 (30.6) 23.0 (22.4)
Missing value 9 

Center < 10–4 < 10–4

Poitiers 316 (41) 24.9 (18.8) 20.3 (19.2)
Nancy 460 (59) 31.2 (34.4) 26.1 (25.7)

Maternal age at end of education (years) 0.02 < 10–3

≤ 16 52 (7) 29.6 (33.1) 24.0 (23.6)
17–18 104 (13) 27.0 (29.6) 22.2 (21.9)
19–20 124 (16) 27.1 (29.1) 23.2 (23.0)
21–22 165 (21) 27.9 (30.0) 23.3 (23.5)
23–24 174 (22) 29.3 (33.1) 24.5 (24.6)
≥ 25 157 (20) 30.6 (34.5) 24.7 (24.6)

Maternal active smoking (second trimester) 0.45 0.30
No 641 (83) 28.8 (32.7) 23.8 (24.0)
Yes 133 (17) 28.1 (32.0) 23.3 (22.8)
Missing value 2

Maternal passive smoking (second trimester) 0.48 0.53
No 507 (66) 28.5 (32.1) 23.7 (23.9)
Yes 264 (34) 29.0 (33.3) 23.9 (23.6)
Missing value 5

ap-Value comparing model-specific exposure estimates between categories (Student test for dichotomous variables) 
or among categories (Fisher’s analysis of variance for variables with more than two categories). Tests were performed 
without including missing data as a separate category.
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but remained smaller than spatial variations 
for the nearest-AQMS model (72–84% for 
spatial variation and 20–25% for temporal 
variation), whereas the contributions of the 
spatial and temporal variation components 
were similar for the TAG model (43–61% for 
spatial variation and 44–57% for temporal 
variation; Table 3). The buffer around the 
AQMS studied had no major effect on the 
relative contributions of spatial and temporal 
components of variation.

The levels and range of NO2 concen-
trations estimated by the nearest-AQMS 
model were greater than those estimated by 
the TAG model (Table 2). Bland–Altman 
plots [see Supplemental Material, Figure 1 
(doi:10.1289/ehp.0901509)] showed that the 
difference between the two models increased 
with mean exposure estimates. This pattern 
was principally due to between-model dif-
ferences for women living in the city centers 
(mean NO2 concentrations estimated by the 
nearest-AQMS model were higher and ranges 
were narrower than for the TAG model), 
rather than in the periurban areas. Indeed, 
the exposure distributions for the two mod-
els became more similar when we did not 
take into account city-center AQMS meas-
urements (Figure 2). All this indicates that 
the overestimation of NO2 exposure levels 

by the AQMS model with respect to the 
TAG model mainly concerned the women 
who were also the most exposed with the 
TAG model.

The correlation and concordance (κ) 
between the two exposure models were fair 
(0.40–0.74) when we considered all the 
women living within 5 km of an AQMS 
[Table 2; see also Supplemental Material, 
Figure 2 (doi:10.1289/ehp.0901509)] but were 
stronger if we restricted the study population 
to women living within 2 (0.37–0.79) or 1 km 
(0.59–0.87) of an AQMS. The correlation and 
concordance between the two exposure mod-
els also differed between the areas (Nancy/
Poitiers) and between the city center and 
suburban areas [see Supplemental Material, 
Figure 2 (doi:10.1289/ehp.0901509)].

Associations between air pollutants and 
fetal growth. The patterns of association with 
birth weight identified were similar for the 
two exposure models, in terms of estimates 
of adjusted effects and confidence intervals 
(CIs), although these associations were stron-
ger for the nearest-AQMS model [Figure 3; 
see also Supplemental Material, Table 1 
(doi:10.1289/ehp.0901509)]. The first and 
third trimesters of pregnancy corresponded 
to the exposure windows most clearly associ-
ated with effects on birth weight, for both 

exposure models. For women living < 2 km 
from an AQMS, a 10-µg/m3 increase in NO2 
concentration during the first trimester of 
pregnancy was associated with an adjusted 
change in mean birth weight of –37 g (95% 
CI, –75 to 1 g) for the nearest-AQMS model 
and of –51 g (95% CI, –128 to 26 g) for 
the TAG model. We obtained qualitatively 
similar results when we coded exposures in 
tertiles [see Supplemental Material, Table 1 
(doi:10.1289/ehp.0901509)]. For the AQMS 
model, the parameter quantifying the associa-
tion between NO2 exposure and birth weight 
approached zero as buffer size increased. We 
obtained similar results if we made no adjust-
ment for city center (data not shown).

Discussion
Our study is one of the first to describe asso-
ciations between NO2 exposure assessed with 
a TAG model and birth weight, and to com-
pare this model with the more commonly 
used approach based on permanent AQMSs. 
We compared models in terms of both expo-
sure estimates and association with birth 
weight. The nearest-AQMS model was influ-
enced by the location of monitors. Variations 
in exposure were mostly attributable to spa-
tial rather than temporal variations in both 
models, with temporal variation making a 

Table 2. Maternal exposure to NO2 (µg/m3) and concordance between NO2 levels [mean ± SD (5th, 50th, 95th percentiles)] estimated by the nearest-AQMS 
model and the TAG model, for various exposure windows and buffer sizes considered around AQMSs.

Nearest-AQMS model  
(5-km buffer)

TAG model  
(5-km buffer)

Between-model agreement

Distancea < 5 km Distancea < 2 km Distancea < 1 km
Area exposure window n NO2 levels n NO2 levels p-Valueb n r c κ n r c κ n r c κ
Both areas

First trimester 770 28.8 ± 10.8 (11.3, 30.1, 43.6) 773 23.7 ± 6.2 (13.6, 23.0, 34.6) 10–4 767 0.67 61 0.41 429 0.70 62 0.43 158 0.83 75 0.63
Second trimester 771 29.0 ± 10.9 (11.5, 30.0, 43.9) 770 24.1 ± 6.5 (13.6, 23.6, 34.4) 10–4 766 0.69 60 0.40 426 0.72 58 0.37 156 0.82 73 0.60
Third trimester 770 28.1 ± 11.1 (10.4, 29.4, 44.2) 772 23.3 ± 6.8 (12.5, 22.8, 34.7) 10–4 767 0.74 63 0.44 428 0.79 68 0.52 155 0.87 79 0.68
Whole pregnancy 776 28.6 ± 10.0 (13.3, 32.4, 41.8) 770 23.7 ± 5.0 (16.1, 23.8, 32.3) 10–4 770 0.65 63 0.44 428 0.70 64 0.46 157 0.85 73 0.59

Poitiers area
First trimester 310 25.6 ± 11.9 ( 9.3, 21.6, 43.0) 316 20.9 ± 6.3 (12.0, 20.4, 35.8) < 10–3 310 0.61 59 0.38 181 0.65 57 0.36 75 0.89 83 0.74
Second trimester 311 25.2 ± 11.6 (10.1, 22.2, 42.7) 315 20.4 ± 6.1 (11.8, 19.9, 32.0) 10–4 311 0.61 56 0.34 179 0.65 57 0.36 74 0.83 63 0.45
Third trimester 310 23.9 ± 11.3 ( 8.5, 21.7, 42.0) 315 19.5 ± 6.3 (11.5, 19.0, 30.8) 10–4 310 0.66 62 0.43 179 0.72 67 0.51 73 0.86 78 0.67
Whole pregnancy 316 24.9 ± 10.6 (12.4, 18.8, 40.5) 316 20.3 ± 4.7 (14.7, 19.2, 30.0) 0.12 316 0.55 56 0.34 181 0.62 58 0.37 75 0.87 68 0.52

Nancy area
First trimester 460 31.0 ± 9.5 (13.6, 31.3, 44.1) 457 25.7 ± 5.2 (17.9, 25.5, 34.6) 10–4 457 0.67 55 0.32 248 0.69 58 0.36 83 0.72 59 0.39
Second trimester 460 31.6 ± 9.6 (14.1, 32.0, 44.4) 455 26.7 ± 5.5 (18.5, 26.6, 35.6) 10–4 455 0.70 58 0.37 247 0.73 65 0.48 82 0.74 66 0.49
Third trimester 460 30.9 ± 10.0 (13.5, 31.4, 45.0) 457 26.0 ± 5.8 (17.5, 25.7, 36.2) 10–4 457 0.74 61 0.41 249 0.78 67 0.51 82 0.82 76 0.63
Whole pregnancy 460 31.2 ± 8.7 (16.9, 34.4, 42.4) 454 26.1 ± 3.7 (20.8, 25.7, 32.8) 10–4 454 0.66 64 0.46 247 0.69 64 0.47 82 0.66 71 0.56

Abbreviations: r, Pearson correlation coefficient; c, concordance percentage (based on NO2 levels categorized in tertiles); κ, kappa coefficient (based on NO2 levels categorized in 
tertiles).
aMaximal distance between home address and the nearest AQMS (buffer size). bp-Value of Kruskal–Wallis rank test comparing the exposure levels from the two models.

Table 3. Variance component (%) of NO2 exposure levels estimated by the nearest-AQMS model and by the TAG model for various exposure windows and buffer 
sizes considered around AQMSs.

Distance < 5 km (n = 681) Distance < 2 km (n = 383) Distance < 1 km (n = 146)

Nearest-AQMS model TAG model Nearest-AQMS model TAG model Nearest-AQMS model TAG model
Exposure window Spatial Temporal Spatial Temporal Spatial Temporal Spatial Temporal Spatial Temporal Spatial Temporal
First trimester 82 21 61 52 79 22 55 57 84 25 56 49
Second trimester 82 20 55 46 79 21 53 52 83 21 58 44
Third trimester 78 21 47 46 76 21 43 52 80 24 52 48
Pregnancy 95 7 92 14 91 8 92 17 97 9 92 13

The sum of variance components is > 100% because the data are not balanced as in experimental plans (i.e., the covariance is not null).
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larger overall contribution to total variation 
in the TAG model than in the nearest-AQMS 
model. The concordance between NO2 expo-
sure estimates with the two models was fair 
when we considered the 5-km buffer. This 
concordance was stronger if we restricted the 
analysis to women living closer (< 2 km and, 
more clearly, < 1 km) to an AQMS. When we 
coded exposure as a continuous term, asso-
ciations with birth weight for the TAG model 
were consistent with those obtained in anal-
yses based on exposure estimated from the 
nearest-AQMS model, for the various buffers 
around AQMS and exposure windows.

The TAG model is thought to have 
a better spatial resolution than the nearest-
AQMS model, because of the use of data 
from fine measurement campaigns, with no 
loss of temporal resolution, because we sea-
sonalized TAG exposure estimates on the 
basis of AQMS measurements. The stron-
ger contribution of the spatial component in 
the nearest-AQMS model than in the TAG 
model may at first glance appear counterin-
tuitive, because the AQMS model could be 
considered to be essentially based on tempo-
ral variations. However, this finding may be 
accounted for by the considerable variation 
of the concentrations obtained with different 
AQMSs, some of which (in the city center) 
were influenced by traffic, despite meeting 
the criteria for background stations. This 
illustrates the extent to which the nearest-
AQMS estimates depend on the location of 
the monitors, and the need for exposure mod-
els with a finer spatial resolution in studies 
with medium- or long-term exposure win-
dows (3–9 months in our study). Because 
passive samplers were located at background 
sites less affected by traffic, the TAG approach 
led to a more purely background model than 
did the AQMS approach. The higher con-
centrations estimated by the nearest-AQMS 
model than by the TAG model (Table 2) may 
be accounted for by this feature. The TAG 
model may also smooth extreme exposure val-
ues, leading to an underestimation of the role 
of spatial variation.

One possible limitation of the TAG 
model stems from the approach used to sea-
sonalize this model, in which we assumed that 
spatial differences in exposure remained con-
stant over time. This assumption was found 
to be reasonable for a LUR model developed 
in Rome (Porta et al. 2009) but may not hold 
in other areas with different characteristics.

Several studies have evaluated the perfor-
mance of AQMS for estimating exposure to 
air pollutants. Nerriere et al. (2005), Nethery 
et al. (2008), and Sarnat et al. (2005) reported 
poor concordance between AQMS estimates 
and personal monitoring data, which is not 
surprising because personal exposure is not 
expected to strictly correspond to background 

levels of air pollution at the home address. 
Marshall et al. (2008) reported correla-
tions and κ-coefficients for estimates from 
the nearest-AQMS model (within 10 km) 
and estimates stemming from either an LUR 
(r = 0.61, κ = 0.42) or a dispersion model 
(r = 0.37, κ = 0.22). The concordance 
obtained with the LUR model was similar 
to that observed in our study with the TAG 
model for a 5-km buffer around the AQMS. 
However, Marshall et al.’s study is not directly 
comparable with ours because they used a 
larger buffer zone (10 km) and because the 
LUR and dispersion models incorporated all 
local sources of pollution, whereas our TAG 
model did not.

In this study, we focused on women liv-
ing < 5 km from an AQMS, whereas previous 
studies on the effects of air pollution on birth 

weight have included women living > 8 km 
(5 miles) from a monitor (Basu et al. 2004; 
Brauer et al. 2008; Parker et al. 2005). Our 
results indicate that the size of buffer around 
monitors considered has a major effect on the 
concordance between models and the esti-
mated association between NO2 concentra-
tion and birth weight. We obtained higher 
levels of concordance between the models if 
we focused on women living within 2 km of 
a monitor, and higher still for women liv-
ing within 1 km of a monitor. Associations 
between NO2 levels and birth weight, 
although not statistically significant at the 
5% level, tended to be stronger for the 2-km 
buffer around the AQMS than for the 5-km 
buffer (Figure 3). The findings were some-
times less clear for women living within 1 km 
of an AQMS, and the CIs were slightly larger 

Figure 2. Box plots (25th, 50th, and 75th percentiles) of NO2 exposure levels during the whole pregnancy 
as estimated by the nearest-AQMS model and by the TAG model, according to the AQMS closest to 
the residential address. The population was restricted to 735 women living < 5 km away from an AQMS 
without change of assigned station during pregnancy. Abbreviations: T, Tomblaine; K, Nancy-Kennedy; 
B, Nancy-Brabois; F, Fléville; S, St Nicolas de Port; N, Neuves-Maison; L, Les couronneries; M, Place du 
marché; C, Chasseneuil. Stations were located in the periurban area. K (Nancy) and M (Poitiers) are sta-
tions located in the city center. 
aExposures estimated taking into account all AQMS. bExposures estimated taking into account all AQMS except K and M 
(city-center stations); for subjects initially assigned to one of these stations, the closest station has been replaced by the 
second AQMS nearest to the home address located outside the city center and < 5 km away from the home address, if 
any. cExposures were estimated taking into account all AQMS except K and M, with all women for whom K or M was the 
closest station excluded from the analysis. 
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than for the 2-km buffer, probably because of 
the small number of subjects. Previous studies 
with buffers of different sizes gave results simi-
lar to ours: Hansen et al. (2008) and Wilhelm 
and Ritz (2005) found negative associations 
between fetal growth and levels of exposure 
to carbon monoxide, coarse particulate matter 
(≤ 10 µm in aerodynamic diameter), sulfur 
dioxide, and ozone during pregnancy, as esti-
mated from data from the nearest AQMS, 
that were stronger for women living within 
2 km of a station than for those living up to 
14 km away. The choice of the buffer size 
can probably be seen as a trade-off between 
bias and variance: The use of smaller buffers 
decreases sample size (increasing variance) but 
also probably decreases exposure misclassifica-
tion (assuming that exposure is better assessed 
for subjects living closer to an AQMS). 
However, selection bias may also contribute 
to the increase in the absolute value of the 
regression parameter quantifying the asso-
ciation between exposure and birth weight 
when smaller buffers are considered. Indeed, 
for associations with third-trimester exposure 
(but less clearly for first-trimester exposure), 
the absolute value of the regression parameter 
also tended to increase as buffer size decreased 
for the TAG model. This is unlikely to stem 
from variations in exposure misclassification 
and might instead be attributed to differences 
in the selection effects associated with buffers 
of different sizes.

Most previous studies considering the 
effects of NO2 have reported larger decreases 
in birth weight for exposure in the first and 
third trimesters of pregnancy (Bell et al. 2007; 
Gouveia et al. 2004; Ha et al. 2001; Liu et al. 
2007; Mannes et al. 2005; Salam et al. 2005) 
than in the second trimester or over the entire 
pregnancy (Ha et al. 2001; Lee et al. 2003; 
Mannes et al. 2005). We observed a similar 
pattern in our study. A discussion of the bio-
logical relevance of the exposure window or the 
underlying mechanisms is beyond the scope 
of this article. Several potential mechanisms 
by which air pollution may affect fetal growth 
have been proposed (Kannan et al. 2006; Ritz 
and Wilhelm 2008; Slama et al. 2008), but 
none of these mechanisms has been validated.

It is generally difficult to predict the 
impact of an error in an exposure variable in 
terms of the potential for bias in the expo-
sure–response relationship (Jurek et al. 2008). 
However, in the specific case of a Berkson-
type error, the power of the study is reduced 
and CIs are widened, but no bias in linear 
regression coefficients is expected (Armstrong 
2008; Zeger et al. 2000). Berkson-type error 
(Armstrong 2008) may occur when the expo-
sure is measured at the population level and 
individual exposures levels vary because of dif-
ferences in the time windows of exposure or 
time–activity patterns. The measurement error 

for the nearest-AQMS approach would be 
expected to have a Berkson-type error compo-
nent, because the same proxy exposure is used 
for all women living in a circular area around a 
given monitor. The observation that exposure 
estimates for the nearest-AQMS model were 
at least as strongly associated with birth weight 
as those for the TAG model is consistent 
with the nearest-AQMS model being subject 
principally to Berkson-type error. Therefore, 
assuming that the observed association with 
birth weight was real, exposure misclassifica-
tion seemed to have little impact on the dose–
response relationship. If we accept that the 
TAG model cannot be seen as a gold stan-
dard, exposure mismeasurement seemed to 
affect both models in similar ways. In a study 
in Vancouver, Canada, Brauer et al. (2008) 
found significant negative associations between 
NO2 exposure and fetal growth when they 
used an AQMS-based approach, but no asso-
ciation when they used an LUR model. They 
considered women living up to 10 km away 
from an AQMS, and the AQMS-based model 
corresponded to an inverse-distance weighting 
index, taking into account the three closest 
stations within 50 km.

Conclusion
Our study indicates that models of exposure 
to background NO2 concentrations based 
on data from the nearest AQMS may entail 
large errors in estimated exposure, but that in 
some instances these errors have little impact 
on the exposure–birth weight relationship. 
The amplitude of exposure misclassification in 
AQMS-based models and of the resulting bias 
may be limited by restricting the size of the 
study area around each AQMS considered. 
Full quantification of the exposure error for 
each model would require consideration of 
the temporal and spatial activities of each sub-
ject. Our study cannot be interpreted as pro-
viding clear evidence that the nearest-AQMS 
approach yields unbiased estimates of the 
association between NO2 concentrations and 
fetal growth. This question requires further 
consideration in other cohorts and in other 
countries, in which the siting of permanent 
monitors may follow different rules.
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